
Test Plan Document

HALO: High Autonomous Low-SWaP
Operations

Team Members

Sloan Hatter (shatter2022@my.fit.edu)
Blake Gisclair (bgisclair2022@my.fit.edu)

Faculty Advisor

Dr. Ryan T. White (rwhite@fit.edu)

September 29, 2025

mailto:shatter2022@my.fit.edu
mailto:bgisclair2022@my.fit.edu
mailto:rwhite@fit.edu

Table of Contents
1.​ Introduction

1.1.​ Purpose
1.2.​ Scope
1.3.​ Objective

2.​ Test Items
3.​ Test Cases

3.1.​ Model Quantization Integrity
3.2.​ Detection Accuracy
3.3.​ Performance on Low-SWaP Hardware
3.4.​ System Reliability & Stability
3.5.​ Deployment & Configuration Testing

4.​ Test Environment
4.1.​ Minimum Hardware/Software Requirements
4.2.​ Recommended Hardware/Software Requirements

5.​ Risks and Contingencies
5.1.​ Potential Risks

5.1.1.​ Accuracy Degradation Due to Quantization
5.1.2.​ Performance Bottlenecks on Low-SWaP Hardware
5.1.3.​ Silent Failures

5.2.​ Mitigation Strategies
5.2.1.​ Training to Recoup Losses in Accuracy
5.2.2.​ Code Optimization/Hardware Swap
5.2.3.​ System Health Monitoring

6.​ Success Criteria
6.1.​ All Functional Requirements Verified by Test Cases

1.​ Introduction
1.1.​ Purpose

This test plan document discusses the testing plan and strategy that will be used to
verify the features of HALO. The test plan outlines test cases, expected results,
and verification methods used to validate those results. This document provides a
record of all testing strategies intended for use in validating system functionality,
along with potential risks the system may encounter and mitigation strategies for
such cases.

1.2.​ Scope
This test plan covers testing the system’s real-time data processing proficiency,
accurate object detection capabilities, and low-SWaP hardware deployability. We
will be testing to ensure that the model can correctly identify and locate
components of a satellite system in real-time while running on a low-SWaP
computer.

1.3.​ Objective
The objective of this test plan is to provide test cases that expose any potential
issues or bugs that the system may encounter during run time and provide
solutions to said issues before product deployment to ensure smooth operations.

2.​ Test Items
Model Quantization Integrity

●​ Verify that the 1-bit quantized model produces outputs that are consistent with the
baseline model.

●​ Test resilience to bit-level errors in weights and activations.
Detection Accuracy

●​ Validate the detection of orbital objects across standard datasets.
●​ Confirm detection accuracy and robustness against false positives.

Performance on Low-SWaP Hardware
●​ Measure inference latency, throughput, and frame rate on Raspberry Pi and

Jetson.
●​ Validate memory footprint and power consumption within specified constraints.

System Reliability & Stability
●​ Validate continuous inference over long durations without crashes or memory

leaks.
●​ Test the model under different hardware conditions.

Deployment & Configuration Testing

●​ Verify installation and startup scripts run successfully on target hardware.
●​ Confirm that the model auto-loads and initializes correctly after reboots or test

crashes.

3.​ Test Cases
3.1.​ Model Quantization Integrity

Test Case 1: Run inference on the baseline model and the binary model using the
same dataset.

●​ Expected Outcome: Accuracy difference 2% ≤
●​ Alternative Outcome: Accuracy difference > 2%

​ ​ Test Case 2: Inject a single-bit flip error into quantized weights.
●​ Expected Outcome: Degraded accuracy, but the system still classifies
●​ Alternative Outcomes:

○​ The model completely crashes
○​ Silent corruption leads to random, unusable outputs

3.2.​ Detection Accuracy
Test Case 1: Input orbital object space images.

●​ Expected Outcome: Bounding boxes overlap with ground truth,
Intersection over Union (IoU) 0.4 ≥

●​ Alternative Outcomes:
○​ No objects are detected
○​ Incorrect localization, IoU < 0.4
○​ Multiple duplicate detections for a single object

Test Case 2: Input images of an empty sky.
●​ Expected Outcome: No detections returned
●​ Alternative Outcome: False positives, imaginary objects detected

Test Case 3: Input images of starfields.
●​ Expected Outcome: Stars are ignored, no detections are returned
●​ Alternative Outcome: False positives, stars are mistaken for objects

3.3.​ Performance on Low-SWaP Hardware
Test Case 1: Run inference on Raspberry Pi/Jetson.

●​ Expected Outcome: Throughput 30 frames per second (FPS) ≥
●​ Alternative Outcome: FPS < throughput threshold

​ ​ Test Case 2: Measure wattage usage
●​ Expected Outcome: System pulls between 10-20 watts
●​ Alternative Outcome: System exceeds wattage threshold

3.4.​ System Reliability & Stability
Test Case 1: Run the system under simulated CPU/GPU stress.

●​ Expected Outcome: Model still produces results within the latency bound
threshold

●​ Alternative Outcome: Model produces detections, but too slowly and
outside of the threshold

​ ​ Test Case 2: Device enters thermal throttling
●​ Expected Outcome: Slower inference, but the system remains functional
●​ Alternative Outcome: Device overheats and shuts down

3.5.​ Deployment & Configuration Testing
Test Case 1: Install system on a clean low-SWaP device

●​ Expected Outcome: Dependencies get installed, and the model runs
●​ Alternative Outcomes:

○​ Dependency conflicts prevent installations
○​ Model loads but fails inference

​ ​ Test Case 2: Reboot the device after installation
●​ Expected Outcome: Model starts automatically and resumes inference
●​ Alternative Outcome:

○​ Model does not autoload
○​ Model loads but fails initialization

4.​ Test Environment
4.1.​ Minimum Hardware/Software Requirements

Raspberry Pi AI HAT+

4.2.​ Recommended Hardware/Software Requirements
Jetson Xavier NX Series 8 GB

5.​ Risks and Contingencies
5.1.​ Potential Risks

5.1.1.​ Accuracy Degradation Due to Quantization
Reducing the model to a 1-bit quantization may cause significant accuracy
loss compared to the baseline model. Some orbital objects might be
missed, or false positives might increase. This would compromise mission
reliability and integrity as incorrect detections could waste resources.

5.1.2.​ Performance Bottlenecks on Low-SWaP Hardware
Inference speed is too low, leading to the system's inability to process
real-time data streams, causing delayed or missed detections.

5.1.3.​ Silent Failures
If the model’s process fails silently, it can lead to inaccurate object
detection or no object detection at all.

5.2.​ Mitigation Strategies
5.2.1.​ Training to Recoup Losses in Accuracy

Deploying training such as FP32 training and Post Training Quantization
(PTQ) will help preserve accuracy and recoup any losses while reducing
the model. Pre-deployment testing will be run extensively with
representative orbital datasets as well.

5.2.2.​ Code Optimization/Hardware Swap
Code optimization with hardware-specific libraries, as well as the use of
model pruning in tandem with quantization. If the Raspberry Pi AI HAT+
proves to have insufficient software capabilities, then the model will be
deployed and run on one of the Jetson alternatives.

5.2.3.​ System Health Monitoring
Implementation of health monitoring, error logging alerts, and redundant
checks can help identify silent failures. If the system stops producing
detections for too long, the system will be killed and rebooted.

6.​ Success Criteria
6.1.​ All Functional Requirements Verified by Test Cases

All functional requirements from the Requirement Document must be tested and
verified through the defined Test Items and Test Cases outlined in this Test Plan
document. Specific criteria include:

●​ Model Quantization integrity: Binary quantization reduces model size
and resource consumption while also maintaining accuracy within the
specified tolerance threshold.

●​ Detection Accuracy: The system correctly detects and localizes orbital
objects with an IoU 0.4 and a low false positive rate. ≥

●​ Performance on Low-SWaP Hardware: The system achieves real-time
throughput of at least 30 FPS while keeping wattage usage between 15 and
20 watts.

●​ System Reliability & Stability: The system runs under CPU/GPU
strainage and has a fallback plan if system overload occurs.

●​ Deployment & Configuration Testing: The model is fully installed
without any setbacks and starts back up successfully after rebooting.

	5.1.1.​Accuracy Degradation Due to Quantization
	5.1.2.​Performance Bottlenecks on Low-SWaP Hardware
	5.1.3.​Silent Failures
	5.2.1.​Training to Recoup Losses in Accuracy
	5.2.2.​Code Optimization/Hardware Swap
	5.2.3.​System Health Monitoring
	1.​Introduction
	1.1.​Purpose
	1.2.​Scope
	1.3.​Objective

	2.​Test Items
	3.​Test Cases
	3.1.​Model Quantization Integrity
	3.2.​Detection Accuracy
	3.3.​Performance on Low-SWaP Hardware
	3.4.​System Reliability & Stability
	3.5.​Deployment & Configuration Testing

	4.​Test Environment
	4.1.​Minimum Hardware/Software Requirements
	4.2.​Recommended Hardware/Software Requirements

	5.​Risks and Contingencies
	5.1.​Potential Risks
	5.1.1.​Accuracy Degradation Due to Quantization
	5.1.2.​Performance Bottlenecks on Low-SWaP Hardware
	5.1.3.​Silent Failures
	5.2.​Mitigation Strategies
	5.2.1.​Training to Recoup Losses in Accuracy
	5.2.2.​Code Optimization/Hardware Swap
	5.2.3.​System Health Monitoring

	6.​Success Criteria
	6.1.​All Functional Requirements Verified by Test Cases

